Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2329487, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38493506

RESUMO

E. ulmoides (Eucommia ulmoides) has significant industrial and medicinal value and high market demand. E. ulmoides grows seedlings through sowing. According to previous studies, plant hormones have been shown to regulate seed germination. To understand the relationship between hormones and E. ulmoides seed germination, we focused on examining the changes in various indicators during the germination stage of E. ulmoides seeds. We measured the levels of physiological and hormone indicators in E. ulmoides seeds at different germination stages and found that the levels of abscisic acid (ABA), gibberellin (GA), and indole acetic acid (IAA) significantly varied as the seeds germinated. Furthermore, we confirmed that ABA, GA, and IAA are essential hormones in the germination of E. ulmoides seeds using Gene Ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses of the transcriptome. The discovery of hormone-related synthesis pathways in the control group of Eucommia seeds at different germination stages further confirmed this conclusion. This study provides a basis for further research into the regulatory mechanisms of E. ulmoides seeds at different germination stages and the relationship between other seed germination and plant hormones.


Assuntos
Eucommiaceae , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Germinação/genética , Eucommiaceae/genética , Eucommiaceae/metabolismo , Transcriptoma/genética , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Hormônios/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
Gene ; 908: 148278, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38360121

RESUMO

Eucommia ulmoides (E. ulmoides) is widely cultivated and exhibits remarkable adaptability in China. It is the most promising rubber source plant in the temperate zone. E. ulmoides gum (EUG) is a trans-polyisoprene with a unique "rubber-plastic duality", and is widely used in advanced materials and biomedical fields. The transcription of Farnesyl pyrophosphate synthase (FPS), the rate-limiting enzyme of EUG biosynthesis, is controlled by regulatory mechanisms that remain poorly elucidated. In this research, 12 TGA transcription factors (TFs) in E. ulmoides were identified. Promoter prediction results revealed that the EuFPS1 promoter had binding sites for EuTGAs. Subsequently, the EuTGA1 was obtained by screening the E. ulmoides cDNA library using the EuFPS1 promoter as a bait. The individual yeast one­hybrid and dual-luciferase assays confirmed that in the tobacco plant, EuTGA1 interacted with the EuFPS1 promoter, resulting in a more than threefold increase in the activity of the EuFPS1. Subcellular localization study further revealed that EuTGA1 is localized in the nucleus and acts as a TF to regulate EuFPS1 expression. In addition, qRT-PCR analysis demonstrated that the expression trend of EuFPS1 and EuTGA1 was the same at different time of the year. Notably, low temperature and MeJA treatments down-regulated EuTGA1 expression. Additionally, the transient transformation of EuTGA1 enhanced NtFPS1 expression in tobacco plants. Overall, this study identified a TF that interacted with EuFPS1 promoter to positively regulate EuFPS1 expression. The findings of this study provide a theoretical basis for further research on the expression regulation of EuFPS1.


Assuntos
Eucommiaceae , Borracha , Borracha/metabolismo , Eucommiaceae/genética , Eucommiaceae/química , Eucommiaceae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Biblioteca Gênica , Geraniltranstransferase/genética
3.
BMC Plant Biol ; 23(1): 562, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964219

RESUMO

BACKGROUND: Eucommia ulmoides leaves have high medicinal and economic value as a dual-purpose substance for medicine and food. Employing leaves from 13 natural populations of Eucommia ulmoides as research objects, this study reveals the variation patterns of intra-specific and inter-specific trait variation and explores the response of leaf characteristics to geographical and climatic changes, aiming to provide a scientific basis for the efficient utilization of leaf resources and the breeding of superior varieties. RESULTS: Descriptive statistical analysis and nested analysis of variance showed significant differences in 11 leaf traits of Eucommia ulmoides inter-populations and intra-populations, with an average coefficient of variation of 17.45%. The coefficient of variation for average leaf phenotypic traits is 20.77%, and the leaf phenotypic variation is mainly from the variation intra-populations. Principal component analysis reveals that the cumulative contribution rate of the top three principal components which mainly contributed to the phenotypic variation of Eucommia ulmoides leaves reached 74.98%, which could be sorted into size traits (34.57%), color traits (25.82%) and shape traits (14.58%). In addition, correlation analysis expresses there is a specific co-variation pattern among leaf traits, with a strong connection between shape, size, and color traits. Geographic and climatic distances are significantly correlated, and mantel test and correlation analysis indicate that leaf traits of Eucommia ulmoides are mainly influenced by altitude. With the increase of altitude, the leaves become smaller. Partial correlation analysis shows that after controlling climate factors, the correlation between some characters and geographical factors disappears significantly. Temperature and precipitation have a great influence on the variation of leaf phenotypic traits, and the larger the leaves are in areas with high temperature and heavy rainfall. CONCLUSIONS: These findings contribute to a further understanding of the leaf morphological characteristics of Eucommia ulmoides and the extent to which the environment influences leaf trait variation. They can provide a scientific basis for the protection and application of Eucommia ulmoides leaf resources in the future.


Assuntos
Eucommiaceae , Eucommiaceae/genética , Melhoramento Vegetal , Fenótipo , Variação Biológica da População , Folhas de Planta
4.
PeerJ ; 11: e16298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901460

RESUMO

The NAC transcription factor family enhances plant adaptation to environmental challenges by participating in signalling pathways triggered by abiotic stressors and hormonal cues. We identified 69 NAC genes in the Eucommia ulmoides genome and renamed them according to their chromosomal distribution. These EuNAC proteins were clustered into 13 sub-families and distributed on 16 chromosomes and 2 scaffolds. The gene structures suggested that the number of exons varied from two to eight among these EuNACs, with a multitude of them containing three exons. Duplicated events resulted in a large gene family; 12 and four pairs of EuNACs were the result of segmental and tandem duplicates, respectively. The drought-stress response pattern of 12 putative EuNACs was observed under drought treatment, revealing that these EuNACs could play crucial roles in mitigating the effects of drought stress responses and serve as promising candidate genes for genetic engineering aimed at enhancing the drought stress tolerance of E. ulmoides. This study provides insight into the evolution, diversity, and characterisation of NAC genes in E. ulmoides and will be helpful for future characterisation of putative EuNACs associated with water deficit.


Assuntos
Eucommiaceae , Fatores de Transcrição , Fatores de Transcrição/genética , Eucommiaceae/genética , Secas , Genômica , Regulação da Expressão Gênica
5.
Gene ; 888: 147758, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37661028

RESUMO

As multifunctional proteins, prohibitins(PHBs) participate in many cellular processes and play essential roles in organisms. In this study, using rapid amplification of cDNA end (RACE) technology, EuPHB1 was cloned from Eucommia ulmoides Oliver (E. ulmoides). A subcellular localization assay preliminarily located EuPHB1 in mitochondria. Then EuPHB1 was transformed into tobacco, and phenotype analyses showed that overexpression of EuPHB1 caused leaves to become chlorotic and shrivel. Furthermore, genes related to hormone and auxin signal transduction, auxin binding, and transport, such as ethylene-responsive transcription factor CRF4-like and ABC transporter B family member 11-like, were significantly inhibited in response to EuPHB1 overexpression. Its overexpression disturbs the original signal transduction pathway, thus causing the corresponding phenotypic changes in transgenic tobacco. Indeed, such overexpression caused fading of palisade tissue and an increase in the number of certain mesophyll cells. It also increased adenosine triphosphate (ATP) synthase activity, mitochondrial membrane potential, ATP content, and reactive oxygen species (ROS) levels in cells. Our results suggest that EuPHB1 expression promotes cellular energy metabolism by accelerating the oxidative phosphorylation of the mitochondrial respiratory chain. Elevated levels of EuPHB1 in the mitochondria, which helps supply the extra energy required to support rapid rates of cell division.


Assuntos
Eucommiaceae , Eucommiaceae/química , Eucommiaceae/genética , Eucommiaceae/metabolismo , Proibitinas , Folhas de Planta/genética , Clonagem Molecular , Ácidos Indolacéticos/metabolismo
6.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175879

RESUMO

To explore the effects of ultraviolet light supplementation on the photosynthetic characteristics and content of secondary metabolites in the leaves of Eucommia ulmoides Oliver (E. ulmoides), the effects of supplementary UV-B (sUV-B) radiation on the medicinally active components of E. ulmoides were comprehensively evaluated. In our study, we selected leaves of five-year-old E. ulmoides seedlings as experimental materials and studied the effect of supplemental ultraviolet-B (sUV-B) radiation on growth, photosynthetic parameters, photosynthetic pigments, fluorescence parameters, and secondary metabolites of E. ulmoides using multivariate analysis. The results showed that the leaf area and the number of branches increased after sUV-B radiation, which indicated that sUV-B radiation was beneficial to the growth of E. ulmoides. The contents of chlorophyll a and chlorophyll b increased by 2.25% and 4.25%, respectively; the net photosynthetic rate increased by 5.17%; the transpiration rate decreased by 35.32%; the actual photosynthetic efficiency increased by 10.64%; the content of the secondary metabolite genipin increased by 12.9%; and the content of chlorogenic acid increased by 75.03%. To identify the genes that may be related to the effects of sUV-B radiation on the growth and development of E. ulmoides leaves and important secondary metabolites, six cDNA libraries were prepared from natural sunlight radiation and sUV-B radiation in E. ulmoides leaves. Comparative analysis of both transcriptome databases revealed a total of 3698 differential expression genes (DEGs), including 1826 up-regulated and 1872 down-regulated genes. According to the KOG database, the up-regulated unigenes were mainly involved in signal transduction mechanisms [T] and cell wall/membrane biogenesis [M]. It is also involved in plant hormone signal transduction and phenylpropanoid biosynthesis metabolic pathways by the KEGG pathway, which might further affect the physiological indices and the content of chlorogenic acid, a secondary metabolite of E. ulmoides. Furthermore, 10 candidate unigenes were randomly selected to examine gene expression using qRT-PCR, and the six libraries exhibited differential expression and were identical to those obtained by sequencing. Thus, the data in this study were helpful in clarifying the reasons for leaf growth after sUV-B radiation. And it was beneficial to improve the active components and utilization rate of E. ulmoides after sUV-B radiation.


Assuntos
Eucommiaceae , Eucommiaceae/genética , Raios Ultravioleta , Ácido Clorogênico/metabolismo , Clorofila A/metabolismo , Folhas de Planta/metabolismo
7.
J Antibiot (Tokyo) ; 76(4): 191-197, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747085

RESUMO

Strain Mg02T was isolated from roots of Eucommia ulmoides Oliv. collected from Changde City, Hunan Province, China. Strain Mg02T, which exhibited distinct chemotaxonomic characteristics of the genus Nocardiopsis: cell-wall chemotype III/C, i.e., meso-diaminopimelic acid as diagnostic amino acid in whole-cell hydrolysates and menaquinone MK-10 with variable degrees of saturation in the side chain as the predominant isoprenoid quinone, was investigated by a polyphasic approach to determine their taxonomic position. Sequence analysis of the 16S rRNA gene indicated that strain Mg02T is affiliated to the genus Nocardiopsis, having highest sequence similarity to Nocardiopsis flavescens CGMCC 4.5723T (99.1%) and <98.7% to other species of the genus Nocardiopsis with validly published names. Phylogenetic analysis of 16S rRNA gene indicated strain Mg02T formed a separate evolutionary clade, suggesting that it could be a novel Nocardiopsis species. Phylogenomic analysis showed that strain Mg02T was closely related to N. flavescens CGMCC 4.5723T and distinct from the latter according to the clustering patterns. The Average Nucleotide Identity and digital DNA-DNA hybridization values between strain Mg02T and N. flavescens CGMCC 4.5723T were far below the species-level thresholds. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, we think that strain Mg02T should represent a novel Nocardiopsis species, for which the name Nocardiopsis changdeensis sp. nov. is proposed. The type strain is Mg02T (=MCCC 1K06174T = JCM 34709T).


Assuntos
Actinobacteria , Actinomycetales , Eucommiaceae , Actinobacteria/genética , Actinobacteria/metabolismo , Eucommiaceae/genética , Eucommiaceae/metabolismo , Ácidos Graxos/química , Nocardiopsis/metabolismo , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , China , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Vitamina K 2/química
8.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233096

RESUMO

Plasma membrane intrinsic protein (PIP) is one of the largest subfamilies of Aquaporins (AQPs) and plays an important role in plant growth and development, and resistance to abiotic stress. In this study, the full length of the EuPIP1;1 cDNA was cloned from Eucommia ulmoides using the rapid amplification of cDNA ends (RACE) method. The EuPIP1;1 gene was induced by drought treatment and expressed in all tested tissues, with the highest expression level in fruit. The subcellular localization showed that EuPIP1;1 was located in the plasma membrane. Constitutive overexpression of EuPIP1;1 in Arabidopsisthaliana could promote leaf growth and development, and accelerate bolting and flowering. Six genes related to growth and flowering (AtPIF4, AtTCP14, AtCRY1, AtCRY2, AtFCA and AtFT) were significantly up-regulated in transgenic lines. Further, EuPIP1;1 gene improved resistance to drought and salt stress in transgenic Arabidopsis. Under drought and salt stress treatment, the transgenic lines had a higher germination rate and accumulation of osmotic substances, lower membrane damage, and could maintain ion homeostasis. Our results suggest that EuPIP1;1 plays an essential role in plant growth and development and in the response to drought and salt stress.


Assuntos
Aquaporinas , Arabidopsis , Eucommiaceae , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/metabolismo , DNA Complementar/metabolismo , Secas , Eucommiaceae/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética
9.
J Plant Physiol ; 278: 153813, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179396

RESUMO

Alkaloids are natural products with many important medicinal activities. To explore the mechanism of abiotic stress promoting alkaloid biosynthesis in Eucommia ulmoides, transcriptomic analysis and metabonomic analysis were used, virus-induced gene silencing (VIGS) lines of target gene were constructed. The results showed that drought and salt stress caused wilting and blackening of leaves, decreased chlorophyll level, and significantly induced MDA and relative conductivity. To resist the damage of stress to cells, the level of secondary metabolites such as alkaloids increased significantly with the extension of stress time. Transcriptomic results showed that, were. Six alkaloid related genes (AWGs) were gathered in five modules positively correlated with either salt stress or alkaloid contents by WGCNA. Results of GO and KEGG enrichment revealed that biosynthesis of alkaloid, especially indole alkaloid was induced, and degradation of alkaloid was inhibited under salt stress. Combining the results of transcriptome and metabolomics, it was suggested that EuRBG10 promotes the production of indole alkaloids and EuAMO5 inhibits the degradation of alkaloids, which may be the core mechanism of the indole alkaloid biosynthesis pathway (map00901) induced by salt stress. The results of these hub proteins were also consistent with the chordal graph of KEGG enrichment. Hub roles of EuRGB10 was checked in E. ulmoides by VIGS. Our findings provide a preliminary understanding of abiotic stress regulating secondary metabolites such as alkaloids, and propose hub genes that can be used to improve the level of bioactive components in medicinal plant.


Assuntos
Alcaloides , Produtos Biológicos , Eucommiaceae , Clorofila , Secas , Eucommiaceae/genética , Alcaloides Indólicos , Estresse Salino
10.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913826

RESUMO

The objective of this study was to investigate the dietary effects of Eucommia ulmoides bark and leaf (EB, EL) supplementation on the growth, lipid metabolism, flesh quality, and transcriptome of grass carp (Ctenopharyngodon idellus). EB and EL were individually added to the basal diet (control) at concentrations of 20 g/kg and 40 g/kg, respectively, and then the three diets were fed to grass carp (59.7 ±â€…0.3 g) for 60 d. The results showed that the weight gain was improved, and the feed conversion ratio was decreased by supplementation with EB and EL (P < 0.05). Compared to the control, the EB and EL groups showed higher flesh hardness; water-holding capacity; and collagen, docosahexaenoic acid (DHA), and n-3 polyunsaturated fatty acids (n-3PUFAs) contents and lower mesenteric lipid and muscle crude lipid contents (P < 0.05). Moreover, dietary EB and EL supplementation increased the activities of superoxide dismutase and glutathione peroxidase and decreased the contents of malondialdehyde and protein carbonyl in flesh (P < 0.05). In muscle transcriptome profiling, a total of 979, 1980 differentially expressed genes (DEGs) were identified, and 29, 199 Gene Ontology (GO) terms and 13, 39 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the EB and EL groups, respectively. Some key pathways and genes involved in promoting growth, lipid metabolism and flesh quality were obtained, including mTOR and PPAR signaling pathways, muscle cytoskeleton- and extracellular matrix-related genes (myosin and collagen), etc. Overall, dietary EB and EL supplementation improved the growth, lipid metabolism, and flesh quality of grass carp, and several potential pathways and genes were identified behind the improvement mechanism of EB and EL supplementation.


As a traditional herb, Eucommia ulmoides (E. ulmoides) has been utilized in East Asia for at least 2 000 years. In recent years, E. ulmoides has been applied in the culture of fish for its functions of promoting growth, lipid metabolism, and flesh quality. However, the underlying molecular mechanism of improving growth, lipid metabolism, and flesh quality is not well understood. Our study showed that the improvement of flesh quality is the combined effect of antioxidant capacity, muscle texture, water-holding capacity, and nutritional composition. Additionally, several potential pathways and differentially expressed genes were identified through RNA sequencing to further study the improvement mechanism of dietary E. ulmoides bark and leaf supplementation on growth, lipid metabolism, and flesh quality in fish.


Assuntos
Carpas , Eucommiaceae , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos , Eucommiaceae/genética , Eucommiaceae/metabolismo , Glutationa Peroxidase/metabolismo , Metabolismo dos Lipídeos , Malondialdeído , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Casca de Planta/metabolismo , Folhas de Planta/metabolismo , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Água
11.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3765-3772, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850833

RESUMO

Lignan is the main medicinal component of Eucommia ulmoides, and lignin is involved in the defense of plants against diseases and insect pests.They are synthesized from coniferyl alcohol with the help of dirigent(DIR) and peroxidase(POD), respectively.In this study, transcriptome assembly of stems and leaves of E.ulmoides was performed, yielding 112 578 unigenes.Among them, 70 459 were annotated in seven databases.A total of 59 unigenes encodes 11 key enzymes in the biosynthesis pathways of lignin and lignin, of which 11 encode POD and 8 encode DIR.A total of 13 unigenes encoding transcription factors are involved in phenylpropanoid metabolism. Compared with leaves of E.ulmoides, 7 575 unigenes were more highly expressed in stems, of which 462 were involved in phenylpropanoid biosynthesis.Our results extend the public transcriptome dataset of E.ulmoides, which provide valuable information for the analysis of biosynthesis pathways of lignan and lignin in E.ulmoides and lay a foundation for further study on the functions and regulation mechanism of key enzymes in lignan and lignin biosynthesis pathways.


Assuntos
Eucommiaceae , Lignanas , Vias Biossintéticas , Eucommiaceae/genética , Lignanas/metabolismo , Lignina/metabolismo , Transcriptoma
12.
Mol Genet Genomics ; 297(2): 485-494, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146538

RESUMO

Eucommia ulmoides (E. ulmoides) is a deciduous perennial tree belonging to the order Garryales, and is known as "living fossil" plant, along with ginkgo (Ginkgo biloba), metaspaca (Metasequoia glyptostroboides) and dove tree (Davidia involucrata Baill). However, the genetic diversity and population structure of E. ulmoides are still  ambiguous nowdays. In this study, we re-sequenced the genomes of 12 E. ulmoides accessions from different major climatic geography regions in China to elucidate the genetic diversity, population structure and evolutionary pattern. By integration of phylogenetic analysis, principal component analysis and population structure analysis based on a number of high-quality SNPs, a total of 12 E. ulmoides accessions were clustered into four different groups. This result is consistent with their geographical location except for group samples from Shanghai and Hunan province. E. ulmoides accessions from Hunan province exhibited a closer genetic relationship with E. ulmoides accessions from Shanghai in China compared with other regions, which is also supported by the result of population structure analyses. Genetic diversity analysis further revealed that E. ulmoides samples in Shanghai and Hunan province were with higher genetic diversity than those in other regions in this study. In addition, we treated the E. ulmoides materials from Shanghai and Hunan province as group A, and the other materials from other places as group B, and then analyzed the evolutionary pattern of E. ulmoides. The result showed the significant differentiation (Fst = 0.1545) between group A and group B. Some candidate highly divergent genome regions were identified in group A by selective sweep analyses, and the function analysis of candidate genes in these regions showed that biological regulation processes could be correlated with the Eu-rubber biosynthesis. Notably, nine genes were identified from selective sweep regions. They were involved in the Eu-rubber biosynthesis and expressed in rubber containing tissues. The genetic diversity research and evolution model of E. ulmoides were preliminarily explored in this study, which laid the foundation for the protection of germplasm resources and the development and utilization of multipurpose germplasm resources in the future.


Assuntos
Eucommiaceae , China , Eucommiaceae/genética , Variação Genética/genética , Filogenia
13.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748480

RESUMO

A novel Gram-stain-positive, endophytic actinobacterium, designated strain HDS5T, was isolated from leaves of Eucommia ulmoides Oliv. collected from Changde City, Hunan Province, PR China. Strain HDS5T produced yellowish oil green substrate mycelia on Gause's synthetic medium, which also carried yellowish oil green aerial hyphae, fragmenting into rod-shaped elements with smooth surfaces. Strain HDS5T grew at pH 5.0-11.0 (optimum, pH 7), at 20-40 °C (optimum, 28 °C) and in the presence of 0-8.0% NaCl (w/v; optimum, 0-1.0 %). Whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic amino acid and no diagnostic sugars. The predominant fatty acids were iso-C16:0 and C18 : 1 ω9c. The menaquinones were MK-10(H2), MK-10(H4) and MK-10(H6). Strain HDS5T showed high 16S rRNA gene sequence similarity to Nocardiopsis prasina DSM 43845T (99.72 %), Nocardiopsis ganjiahuensis DSM 45031T (99.31 %), Nocardiopsis exhalans JCM 11759T (99.17 %), Nocardiopsis alba DSM 43377T (99.11 %), Nocardiopsis metallicus KBS6T (99.11 %), Nocardiopsis valliformis DSM 45023T (99.04 %), Nocardiopsis listeri NBRC 13360T (98.97 %), Nocardiopsis lucentensis DSM 44048T (98.83 %), Nocardiopsis terrae YIM 90022T (98.83 %) and <98.7 % similarities to other type strains. Phylogenetic analysis of 16S rRNA gene sequences and whole-genome sequences showed that strain HDS5T was closely related to N. prasina DSM 43845T. However, the average nucleotide identity based on blast and digital DNA-DNA hybridization values between them were determined to be 90.1 and 40.9 %, respectively, below the threshold of 95-96 and 70 % for the delineation of prokaryotic genomic species, suggesting that strain HDS5T represents a novel Nocardiopsis species. Furthermore, the morphological and physio-biochemical characteristics were sufficient to distinguish strain HDS5T from N. prasina DSM 43845T. Consequently, based on phenotypic and genotypic characteristics, strain HDS5T represents a new Nocardiopsis species, for which the name Nocardiopsis eucommiae sp. nov. is proposed. The type strain is HDS5T (=MCCC 1K06172T=JCM 34707T).


Assuntos
Actinobacteria , Actinomycetales , Eucommiaceae , Nocardia , Ácidos Graxos/química , Eucommiaceae/genética , Nocardiopsis , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Nocardia/genética , Vitamina K 2/química , Fosfolipídeos/química
14.
Genomics ; 113(5): 3294-3309, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34022347

RESUMO

The WRKY transcription factors is one of the largest families of transcription factors (TFs) in plants and involved in multiple biological processes. However, the role of the WRKY family had not been reported in Eucommia ulmoides. In this study, 45 WRKY genes (EuWRKY1-45) with conserved WRKY domain were identified in E. ulmoides and classified into three groups. The group II was further divided into five subgroups based on phylogenetic analysis, and each clade was well supported by the conserved motifs. All the genes were located on 34 different scaffolds respectively. A number of development-, light-, hormone-, and stress-related elements were randomly distributed in the promoter sequences of EuWRKYs. Expression profiles indicated that EuWRKY genes were involved in leaf development, and majority of EuWRKYs genes were highly expressed in leaf buds. Co-expression analysis of WRKYs suggested an intricate interplay of growth-related responses. EuWRKY4 was involved in a complex proteins interaction network. Collectively, our results provide extensive insights into the WRKY gene family, thereby contributing to the screening of additional candidate genes in E. ulmoides.


Assuntos
Eucommiaceae , Proteínas de Plantas , Eucommiaceae/genética , Eucommiaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
15.
Sci Rep ; 11(1): 6900, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767357

RESUMO

The 2',3'-cycling ribonuclease (RNase) genes are catalysts of RNA cleavage and include the RNase T2 gene family. RNase T2 genes perform important roles in plants and have been conserved in the genome of eukaryotic organisms. In this study we identified 21 EURNS genes in Eucommia ulmoides Oliver (E. ulmoides) and analyzed their structure, chromosomal location, phylogenetic tree, gene duplication, stress-related cis-elements, and expression patterns in different tissues. The length of 21 predicted EURNS proteins ranged from 143 to 374 amino acids (aa), their molecular weight (MW) ranged from 16.21 to 42.38 kDa, and their isoelectric point (PI) value ranged from 5.08 to 9.09. Two classifications (class I and class III) were obtained from the conserved domains analysis and phylogenetic tree. EURNS proteins contained a total of 15 motifs. Motif 1, motif 2, motif 3, and motif 7 were distributed in multiple sequences and were similar to the conserved domain of RNase T2. EURNS genes with similar structure and the predicted EURNS proteins with conserved motif compositions are in the same group in the phylogenetic tree. The results of RT-PCR and transcription data showed that EURNS genes have tissue-specific expression and exhibited obvious trends in different developmental stages. Gene duplication analysis results indicated that segment duplication may be the dominant duplication mode in this gene family. This study provides a theoretical basis for research on the RNase T2 gene family and lays a foundation for the further study of EURNS genes.


Assuntos
Endorribonucleases/genética , Eucommiaceae/genética , Endorribonucleases/metabolismo , Eucommiaceae/enzimologia , Genoma de Planta , Família Multigênica , Filogenia
16.
Biosci Biotechnol Biochem ; 85(2): 233-241, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604631

RESUMO

Eucommia ulmoides is an economic tree that can biosynthesize secondary metabolites with pharmacological functions. Genetic basis of biosynthesis of these compounds is almost unknown. Therefore, genomic-wide association study was performed to exploit the genetic loci maybe involved in biosynthetic pathways of 5 leaf inclusions (aucubin, chlorogenic acid, gutta-percha, polyphenols, total flavonoids). It was shown that contents of the 5 leaf metabolites have a wide variation following normal distribution. A total of 2 013 102 single nucleotide polymorphism (SNP) markers were identified in a population containing 62 individual clones. Through genome-wide association study analysis, many SNP loci were identified perhaps associated with phenotypes of the leaf inclusions. Higher transcriptional levels of the candidate genes denoted by significant SNPs in leaves suggested they may be involved in biosynthesis of the leaf inclusions. These genetic loci provide with invaluable information for further studies on the gene functions in biosynthesis of the leaf inclusions and selective breeding of the plus trees.


Assuntos
Eucommiaceae/genética , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Folhas de Planta/metabolismo , Eucommiaceae/metabolismo , Perfilação da Expressão Gênica , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
Commun Biol ; 4(1): 215, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594248

RESUMO

Some plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms-EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants.


Assuntos
Dimetilaliltranstransferase/metabolismo , Eucommiaceae/enzimologia , Hemiterpenos/biossíntese , Látex/biossíntese , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Eucommiaceae/genética , Hemiterpenos/química , Látex/química , Modelos Moleculares , Peso Molecular , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Conformação Proteica , Relação Estrutura-Atividade
18.
Mol Biol Rep ; 47(3): 1979-1990, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32040708

RESUMO

Trans-polyisoprene rubber is produced in the tissues of leaves, bark, and fruit of Eucommia ulmoides and is considered an important energy source. Transcript profiles of two tissues from E. ulmoides cv. Qinzhong No. 3, leaf and fruit, were analysed using the Illumina HiSeq 2000 system. In total, 104 million clean reads were obtained and assembled into 58,863 unigenes. Through gene functional classification, 28,091 unigenes (47.72%) were annotated and 65 unigenes have been hypothesized to encode proteins involved in terpenoid biosynthesis. In addition, 10,041 unigenes were detected as differentially expressed unigenes, and 29 of them were putatively related to terpenoid biosynthesis. The synthesis of trans-polyisoprene rubbers in E. ulmoides was hypothesised to be dominated by the mevalonate pathway. Farnesyl diphosphate synthase 2 (FPPS2) was considered a key component in the biosynthesis of trans-polyprenyl diphosphate. Rubber elongation factor 3 (REF3) might be involved in stabilising the membrane of rubber particles in E. ulmoides. To date, 351 simple sequence repeats (SSRs) were validated as polymorphisms from eight E. ulmoides plants (two parent plants and six F1 individuals), and these could act as molecular markers for genetic map density increase and breeding improvement of E. ulmoides.


Assuntos
Vias Biossintéticas , Eucommiaceae/genética , Perfilação da Expressão Gênica/métodos , Repetições de Microssatélites , DNA de Plantas , Eucommiaceae/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Análise de Sequência de RNA , Terpenos/metabolismo
19.
Genes (Basel) ; 10(8)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430866

RESUMO

Eucommia ulmoides has attracted much attention as a valuable natural rubber (Eu-rubber) production tree. As a strategic material, Eu-rubber plays a vital role in general and defence industries. However, the study of Eu-rubber biosynthesis at a molecular level is scarce, and the regulatory network between microRNAs (miRNAs) and messenger RNAs (mRNAs) in Eu-rubber biosynthesis has not been assessed. In this study, we comprehensively analyzed the transcriptomes, small RNAs (sRNAs) and degradome to reveal the regulatory network of Eu-rubber biosynthesis in E. ulmoides. A total of 82,065 unigenes and 221 miRNAs were identified using high-throughput sequencing; 20,815 targets were predicted using psRNATarget software. Of these targets, 779 miRNA-target pairs were identified via degradome sequencing. Thirty-one miRNAs were differentially expressed; 22 targets of 34 miRNAs were annotated in the terpenoid backbone biosynthesis pathway (ko00900) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG). These miRNAs were putatively related to Eu-rubber biosynthesis. A regulatory network was constructed according to the expression profiles of miRNAs and their targets. These results provide a comprehensive analysis of transcriptomics, sRNAs and degradome to reveal the Eu-rubber accumulation, and provide new insights into genetic engineering techniques which may improve the content of Eu-rubber in E. ulmoides.


Assuntos
Eucommiaceae/genética , Látex/biossíntese , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma , Eucommiaceae/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Terpenos/metabolismo
20.
Int J Mol Sci ; 20(16)2019 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-31426587

RESUMO

Eucommia ulmoides Oliver is widely distributed in China. This species has been used mainly in medicine due to the high concentration of chlorogenic acid (CGA), flavonoids, lignans, and other compounds in the leaves and barks. However, the categories of metabolites, dynamic changes in metabolite accumulation and overall molecular mechanisms involved in metabolite biosynthesis during E. ulmoides leaf growth and development remain unknown. Here, a total of 515 analytes, including 127 flavonoids, 46 organic acids, 44 amino acid derivatives, 9 phenolamides, and 16 vitamins, were identified from four E. ulmoides samples using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) (for widely targeted metabolites). The accumulation of most flavonoids peaked in growing leaves, followed by old leaves. UPLC-MS analysis indicated that CGA accumulation increased steadily to a high concentration during leaf growth and development, and rutin showed a high accumulation level in leaf buds and growing leaves. Based on single-molecule long-read sequencing technology, 69,020 transcripts and 2880 novel loci were identified in E. ulmoides. Expression analysis indicated that isoforms in the flavonoid biosynthetic pathway and flavonoid metabolic pathway were highly expressed in growing leaves and old leaves. Co-expression network analysis suggested a potential direct link between the flavonoid and phenylpropanoid biosynthetic pathways via the regulation of transcription factors, including MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic/helix-loop-helix). Our study predicts dynamic metabolic models during leaf growth and development and will support further molecular biological studies of metabolite biosynthesis in E. ulmoides. In addition, our results significantly improve the annotation of the E. ulmoides genome.


Assuntos
Eucommiaceae/genética , Metaboloma , Proteínas de Plantas , Transcriptoma , Ácido Clorogênico/metabolismo , Eucommiaceae/crescimento & desenvolvimento , Eucommiaceae/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...